Overview

The Development phase leverages AI coding assistants to transform approved designs and requirements into working software. This phase emphasizes automation, quality guardrails, and maintaining high standards while dramatically increasing development velocity.

Process Flow

graph TD
    A[User Stories & Design] -->|AI Analysis| B[Implementation Plan]
    B -->|Review & Approval| C[Development]
    C -->|AI Assistance| D[Code Generation]
    D -->|Automated Tests| E[Quality Checks]
    E -->|Code Review| F[Pull Request]
    F -->|CI/CD Pipeline| G[Deployment Ready]
    
    style A fill:#f9f,stroke:#333,stroke-width:2px
    style G fill:#9f9,stroke:#333,stroke-width:2px

Step 1: AI-Powered Development Planning

Implementation Planning Process

Comprehensive Planning Prompt:

Analyze the following user story and create a detailed implementation plan:

[Insert User Story with Acceptance Criteria]

Include:
1. Architecture decisions and patterns to use
2. File structure and module organization
3. API endpoints and contracts
4. Data models and database changes
5. Test strategy (unit, integration, e2e)
6. Error handling approach
7. Security considerations
8. Performance optimizations
9. Documentation requirements

Consider:
- Existing codebase patterns in [repository]
- Technology stack: [list technologies]
- Coding standards: [link to standards]
- Non-functional requirements: [list]

Format as a structured plan with clear sections.

Plan Components

Component Details Validation
Architecture Patterns, structure, dependencies Tech lead review
API Design Endpoints, payloads, responses Contract testing
Data Models Entities, relationships, migrations Schema validation
Test Strategy Coverage targets, test types QA approval
Security Auth, validation, encryption Security scan

Step 2: Development Implementation

AI Coding Assistant Configuration

  1. Context Setup:
    # .claude-context or .github/copilot-context
       
    Project: [Project Name]
    Stack: TypeScript, React, Node.js, PostgreSQL
       
    Patterns:
    - Use functional components with hooks
    - Implement error boundaries
    - Follow REST conventions
    - Use dependency injection
       
    Standards:
    - ESLint configuration: .eslintrc
    - Prettier formatting: .prettierrc
    - Test coverage minimum: 80%
    
  2. Custom Instructions: ```markdown When generating code:
    1. Follow existing patterns in the codebase
    2. Include comprehensive error handling
    3. Write tests alongside implementation
    4. Add JSDoc comments for public APIs
    5. Use meaningful variable names
    6. Implement logging for debugging
    7. Consider edge cases
    8. Optimize for readability ```

Implementation Workflow

  1. Feature Development:
    // Example: AI-generated user service
    import { Injectable } from '@nestjs/common';
    import { InjectRepository } from '@nestjs/typeorm';
    import { Repository } from 'typeorm';
    import { User } from './entities/user.entity';
    import { CreateUserDto } from './dto/create-user.dto';
    import { Logger } from '../common/logger';
    
    @Injectable()
    export class UserService {
      private readonly logger = new Logger(UserService.name);
    
      constructor(
        @InjectRepository(User)
        private userRepository: Repository<User>,
      ) {}
    
      async create(createUserDto: CreateUserDto): Promise<User> {
        this.logger.log('Creating new user', { email: createUserDto.email });
           
        try {
          const user = this.userRepository.create(createUserDto);
          const savedUser = await this.userRepository.save(user);
             
          this.logger.log('User created successfully', { userId: savedUser.id });
          return savedUser;
        } catch (error) {
          this.logger.error('Failed to create user', error);
          throw new Error('User creation failed');
        }
      }
    }
    
  2. Test Generation:
    // AI-generated test suite
    describe('UserService', () => {
      let service: UserService;
      let repository: MockRepository<User>;
    
      beforeEach(async () => {
        const module = await Test.createTestingModule({
          providers: [
            UserService,
            {
              provide: getRepositoryToken(User),
              useClass: MockRepository,
            },
          ],
        }).compile();
    
        service = module.get<UserService>(UserService);
        repository = module.get<MockRepository<User>>(getRepositoryToken(User));
      });
    
      describe('create', () => {
        it('should create a new user', async () => {
          const createUserDto: CreateUserDto = {
            email: 'test@example.com',
            name: 'Test User',
          };
    
          const savedUser = { id: '123', ...createUserDto };
          repository.create.mockReturnValue(savedUser);
          repository.save.mockResolvedValue(savedUser);
    
          const result = await service.create(createUserDto);
    
          expect(result).toEqual(savedUser);
          expect(repository.create).toHaveBeenCalledWith(createUserDto);
          expect(repository.save).toHaveBeenCalled();
        });
    
        it('should handle creation errors', async () => {
          repository.save.mockRejectedValue(new Error('Database error'));
    
          await expect(service.create(createUserDto))
            .rejects.toThrow('User creation failed');
        });
      });
    });
    

Step 3: AI Guardrails Implementation

Comprehensive Guardrails Table

Job Name Purpose When Run Tools Used
commit_message_validation Validates conventional commit format and AI authorship Commit Hook + CI/CD commitlint, custom scripts
pr_message_validation Validates comprehensive PR description CI/CD GitHub Actions, custom validators
lint Enforces code style and quality standards Pre-commit + CI/CD ESLint, Prettier, language-specific linters
typecheck Static type checking Pre-commit + CI/CD TypeScript, Flow, mypy
test_unit Runs unit tests Pre-commit + CI/CD Jest, pytest, JUnit
test_integration Runs integration tests CI/CD Jest, pytest, Postman
test_e2e End-to-end browser tests CI/CD Playwright, Cypress, Selenium
visual_regression_test Visual UI testing CI/CD Percy, Chromatic, BackstopJS
format Code formatting consistency Pre-commit + CI/CD Prettier, Black, gofmt
build Project compilation CI/CD Webpack, tsc, Maven
dependency_security_scan Vulnerability scanning CI/CD Snyk, npm audit, OWASP
static_security_testing SAST analysis CI/CD SonarQube, CodeQL, Checkmarx
secret_scanning Detect hardcoded secrets CI/CD GitGuardian, TruffleHog
license_compliance OSS license validation CI/CD FOSSA, WhiteSource
code_quality_check AI-powered quality review CI/CD CodeClimate, DeepCode
compliance_validation Framework compliance CI/CD Custom validators

Guardrail Configuration Example

# .github/workflows/guardrails.yml
name: AI Development Guardrails

on:
  pull_request:
    types: [opened, synchronize]
  push:
    branches: [main, develop]

jobs:
  quality-checks:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      
      - name: Validate Commit Messages
        run: |
          npm install -g @commitlint/cli
          commitlint --from=$
      
      - name: Run Linting
        run: |
          npm run lint
          npm run format:check
      
      - name: Type Checking
        run: npm run typecheck
      
      - name: Unit Tests
        run: npm run test:unit -- --coverage
      
      - name: Security Scanning
        uses: snyk/actions/node@master
        env:
          SNYK_TOKEN: $
      
      - name: SAST Analysis
        uses: github/super-linter@v4
        env:
          GITHUB_TOKEN: $

Step 4: Code Review Process

AI-Assisted Review

  1. Automated PR Description:
    ## Summary
    This PR implements user authentication functionality as specified in JIRA-123.
       
    ## Changes
    - Added login endpoint with JWT token generation
    - Implemented password hashing with bcrypt
    - Created user session management
    - Added comprehensive test coverage (92%)
       
    ## Testing
    - [x] Unit tests passing
    - [x] Integration tests passing
    - [x] Manual testing completed
    - [x] Security scan passed
       
    ## Checklist
    - [x] Code follows project conventions
    - [x] Tests cover edge cases
    - [x] Documentation updated
    - [x] No security vulnerabilities
       
    🤖 Generated with AI assistance
    Co-authored-by: AI Assistant <ai@example.com>
    
  2. Review Focus Areas:
    • Business logic correctness
    • Security vulnerabilities
    • Performance implications
    • Code maintainability
    • Test coverage

Human Review Guidelines

Review Aspect What to Check Red Flags
Business Logic Correctness, edge cases Assumptions, missing validation
Security Auth, input validation Hardcoded secrets, SQL injection
Performance Queries, algorithms N+1 queries, inefficient loops
Maintainability Readability, patterns Complex functions, poor naming
Testing Coverage, scenarios Missing edge cases, brittle tests

Step 5: Documentation Generation

Automated Documentation

Documentation Generation Prompt:

Generate comprehensive documentation for this code:
[Insert code]

Include:
1. Overview and purpose
2. API documentation with examples
3. Configuration options
4. Usage examples
5. Error handling
6. Performance considerations
7. Security notes
8. Troubleshooting guide

Documentation Types

  1. API Documentation: ```typescript /**
    • Creates a new user account
    • @param {CreateUserDto} createUserDto - User creation data
    • @returns {Promise} The created user object
    • @throws {ConflictException} If email already exists
    • @throws {BadRequestException} If validation fails
    • @example
    • const user = await userService.create({
    • email: ‘user@example.com’,
    • name: ‘John Doe’,
    • password: ‘securePassword123’
    • }); */ ```
  2. README Updates:
    ## User Authentication Module
       
    ### Features
    - JWT-based authentication
    - Password hashing with bcrypt
    - Session management
    - Role-based access control
       
    ### Installation
    ```bash
    npm install
    npm run migration:run
    

    Configuration

    JWT_SECRET=your-secret-key
    JWT_EXPIRATION=7d
    BCRYPT_ROUNDS=10
    

    ```

Success Metrics

Development Velocity

  • Lines of Code per Day: 200-400 (150-200% increase)
  • Feature Completion: 160-140% faster
  • Bug Fix Time: 75-80% reduction
  • Code Review Time: 80-85% reduction

Code Quality

  • Test Coverage: 85-95%
  • Code Duplication: <5%
  • Cyclomatic Complexity: <10
  • Security Vulnerabilities: 0 critical/high

Documentation

  • API Coverage: 100%
  • Code Comments: All public methods
  • README Completeness: 95%
  • Update Frequency: With each PR

Best Practices

1. Context Maintenance

  • Keep AI context files updated
  • Document patterns and conventions
  • Share knowledge across team
  • Regular context reviews

2. Test-Driven Development

  • Write tests first or alongside code
  • Aim for high coverage
  • Test edge cases
  • Automate test execution

3. Security First

  • Input validation on all endpoints
  • Parameterized queries
  • Secure secret management
  • Regular dependency updates

4. Performance Optimization

  • Profile before optimizing
  • Use caching strategically
  • Optimize database queries
  • Monitor resource usage

Common Pitfalls & Solutions

Pitfall Impact Solution
Over-reliance on AI Poor code quality Human review critical
Ignoring context Inconsistent code Maintain context files
Skipping tests Production bugs Enforce coverage
Poor documentation Maintenance issues Automate generation
Security oversights Vulnerabilities Automated scanning

Tools & Resources

  • AI Coding: Cursor, GitHub Copilot ($20-39/user/month)
  • IDE: VS Code with AI extensions (Free)
  • Testing: Jest, Playwright ($0-500/month)
  • Security: Snyk, SonarQube ($32-98/month)

Templates & Examples

Next Steps

  1. Configure AI Tools: Set up coding assistants
  2. Implement Guardrails: Deploy CI/CD checks
  3. Create Templates: Standardize patterns
  4. Train Team: AI tool proficiency
  5. Measure Impact: Track metrics

Continue to Phase 4: Quality Assurance & Deployment →


This phase typically increases development velocity by 150-200% while maintaining or improving code quality.